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Abstract

The one-dimensional fast-time averaged Hamiltonian is derived

in a free electron laser (FEL) for electrons passing through a

constant wiggler and a fadiation field. The exact unperturbed orbits

vithout sidebands/a obtained for all particles and arbitrary

separatrix width 6y. Integration in action-angle variables of the

linearized Vlasov equation with perturbing sidebands over the

unperturbed orbits yields the sideband gain for both trapped and

untrapped particles. The unperturbed distribution f0  is in an

adiabatic equilibrium with the main signal field. It is found that

upper and lower sidebands that are symmetric relative to the FEL

frequency have opposite growth rates. There is no differentiation in

the magnitude of the gain between upper and lower sidebands. The

stability is determinej ,Z the sign of dfo/d&,,. i.e., the relative -' -4
population of oscillation quanta , . b  = bounce frequency around

resonance. The shear 4%dJ, where J is the action variable, is

stabilizing and distributions with gradients df /dJ localized near the0 . T- , r
separatrix have the minimum growth rates. The structure and scaling of

the unstable spectrum are different from previous results obtained for

electrons localized at the bottom of the ponderomotive well.-T -
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-1 IIIODCTIOI LID SUNKARY

The grovth of parasitic modes at frequencies near the main

signal frequency during high pover FIL operation vas theoretically

predicted1'2  in early 1980's. Since then there has been ample

numerical3 94 and experimental5 6 evidence of sideband excitation in

constant viggler IlLs. Unstable modes in variable viggler FILs have

also been observed in simulations7 9  and recently in experiment10 .

Sidebands degrade the main signal efficiency and optical quality by

channeling a considerable fraction of the pover into parasitic

frequencies. The performance of the mirrors in an oscillator can be

harmed from the modulation of the vave envelope caused by the

sidebands. Last, but not least, interaction among nearby sidebands

above a certain amplitude may lead to chaotic particle notion, loss of

trapping and incoherent radiation.

The above have stimulated a considerable amount of theoretical

york focused on sideband grovth. Simple one-dimensional configurations

that are analytically tractable have been used to model the situation.

Tvo lines of approach have been considered. The single particle

picture regards the particle trajectories as functions of the initial

conditions and computes the gain by ensemble averaging over initial

distributions . The alternative approach assumes some adiabatic

f 1* iulibrium betveen the particles and the main signal and examines the

stability*of the perturbations induced by the sidebands, solving the
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kinetic equation11 '12. Because of the equilibrium assumption the

kinetic method is more appropriate for FEL operation as an amplifier.

In both treatments so far, analytic results have been obtained

only for particles localized near the bottom of the ponderomotive

veil. This implies the folloving limitations: The sideband spectrum

becomes discrete

as - or ± (kr/kv)nb(O), kr/kv - 2 5' (1)

vhere wb(O) is the bounce frequency at the bottom of the ponderomotive

vell, kr kv are the radiation and viggler vave numbers respectively

and rs=(1-vz2/c2 )-1 /2 . The contribution from untrapped particles and

trapped particles avay from the bottom is neglected. The effect of the

shear dwb/dJ, vhere the action J parametrizes the distance from the

centre of the separatrix J=O, is lost. Finally no predictions can be

made about the saturation level of potentially unstable modes.

Here canonical formalism is introduced by expressing the

unperturbed particle orbits in terms of action-angle variables. The

unperturbed orbits are of course the fast time averaged "synchrotron"

oscillations of the electrons in the potential vell formed by the

combined action of the viggler and the radiation signal. The perturbed

kinetic equation is solved in action space, starting from an

equilibrium extending over all trapped and untrapped electrons. It is

found that:

(a) the spectrum becomes continuous replacing wb(O) by %(J) *-

T1]
in Eq. (1). The modes located at the peaks of the unstable spectrum -'Wdfed

I I C t i onL_

grov faster, emerging as the discrete spectrum that is observed in-

simulations. .. I qt ri but ion/
3 ;- Av-_all-abllity C,s
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(b) Nore than one group of particles are in resonance vith a

given sideband frequency- w through different harmonics of their

bounce frequency and contribute to the grovth rate.

(c) The shear do%/dJ is stabilizing. Distributions with

gradients df0/dJ localized near the separatrix are found to have the

minimum grovth rates because of the high shear there. This type of

distribution is relevant to FEL's vith tapered vigglers.

(d) The gain is proportional to [df(J)/ds%(J)J, the relative

population in oscillation quanta around resonance, in agreement with

the quantum mechanical interpretation.

(e) Upper and lover sidebands located symmetrically around the

main signal frequency have opposite gains (complementary stability).

Therefore one mode is alvays unstable. There is no stable distribution

f0 (J) except the trivial one df0 /dJ-O.

(f) For any smooth distribution, of finite df0 /dJ, electrons

at the bottom of the well have a negligible effect on stability.

(g) Previous results, finding lover sidebands having an

inherently larger gain than upper sidebands, are relevant only to the

limiting case of a singular &-function distribution f0 (J)8(J). This

case is unrealistic because a wide, smooth initial distribution in

action f0(J) corresponds to even an ideal cold bean distribution in

momentum fo(p)=6(p-po).

The nonlinear saturation levels for the unstable modes and the

amplitude for stochastic transition can also be derived from our

formalism and vill be addressed in future work.
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II. VOIPUTATIO OF 13 GAIN

Ve consider a linearly polarized viggler of constant

wavelength 2h/kv and constant amplitude Av and plain monochromatic

waves for the main signal and the sideband. The total vector potential

is given by A.Ay(zt)ey vith

A y(z,t) - AVcoskvz + Ar cos(k rZ-rt) + A cos(ksz-%t) (2)

vhere the subscripts v, r and s stand for viggler, main radiation and

sideband respectively, Ar, A8 , are constant and Ar>>A. Our

Hamiltonian is one-dimensional non autonomous because the canonical

momenta

P P p A (Z,t) (3)
x Px y - y c Ayzt

are constants of motion that can be conveniently set to zero. Ve

svitch to the time averaged coordinates PzW<Pz> and 2=<z> through the

appropriate canonical transformation, choosing a generating function

that kills the fast oscillating terms due to the viggling motion (see

Ref. 13). Introducing the nev variables

P a Pz / (kr+ kv)' *(kr+ kv)z - art

and keeping only linear terms in the small amplitude a the averaged

interaction Bamiltonian becomes
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*(?, ;t)-(N2 +(kr~kv)2 F2 -avarcos-avasos(#-&st)) 1/2 (4)

Here tim Is normalized to ar , length to kr l velocity to c, mass

to m, a-eA /mac 2 and N2=1+(a 2 +ar2 )/2. Although kruer-l in the above

units ve viii vrite them explicitly to avoid confusion. The term 6. in

Sq. (4) signifies the Doppler shifted frequency departure of the

sideband from the main signal

Is - ( k) (%- ). (5)

The terms proportional to avar and ava s are the ponderomotive

potentials caused by the beating together of the viggling notion vith

the signal and the sideband field respectively.

hen as=O the Hamiltonian B0(P,*) is exactly integrable. The

unperturbed trajectories, shovn in Fig. l(a), are given by

No(P,*) - K

vith the constant K determined from the initial conditions

K=Ru0(Po,* ). These trajectories take the simplest possible form

expressed in term of the action angle variables (J,8)

J(t) - Jo = const.,

0(t) - So + *b(J)t, (6)

%b(J) - dHo(J)/dJ,

vhere J is the area in phase space enclosed by an orbit divided by 2n.

In the above variables the vidth of the separatrix v is given by
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viii vith J the value of action at the separatrix. The relation
SeP sep

between aev (J,O#) and old (Pto) variables Is expressed by

- afr)1/21 3Q)(- 2 I~I

J nj1 ()i

Vith 2#2the complete elliptic Integrals of the first and second

kind and an the Jacobi elliptic sine function. The trapping parameter

is t given by,

X-(F+G)/2G,

F - (k rk A) 2(K2 92) (8)

G - ava I(kr+kv) 2_ I],

and ye have )MC, )?>l for trapped and untrapped particles

respectively. The three constants of the motion X2, K and J are

mutually dependent and any one of the. defines uniquely a trajectory.

The bounce frequency is found from Eqs. (6), (7) and (8)
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ub(J) r~

Vith

VO) G/21/2 (kvkr)_ 1 (aakk)1/2
(kr+kv)23: V rv

Ve nov perform a linear expansion of the Hamiltonian Sq. (4)

In the-small sideband amplitude a followed by a decomposition of the

perturbing term cos(GO)-8 tj into harmonics of the synchrotron

oscillation to obtain

H(JO) - 1(J) +,!%( h'(J)cos(nS.t) + h;(J)Cos(ne-6 t) )

h*(J) eve Q(J). (10)
n %~(J) + P n

The coefficients 0n (J) are obtained by contour Integration in the

complex plane using the double periodicity properties of the Jacobi

elliptic functions,

n

_ (,,)n n12 a q exip(~lX

22(k 1(-1q))/X

Ot --nn2X2_ q n( 1 9q -exp X(
n I9(l/,A) 1-q 2n 1+q 2 1X

Qn (J) tends to 0 as J tends to either 0 or -vhile the maximum occurs

at the separatrix \2.1. Q) (J) becomes progressively smaller with
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Increasing n everyvhere except in the vicinity of the separatricies.

That limits the number of harmonics to be considered for instabilities

localized avay from the separatrix. The perturbed equations of motion

In the standard form read

d ;D~h*(~sinnG~gt) + h-(J)sin(nO -6 t)),

d+ d dh - (11)
d n +!(ycos(nG44,t) + n- cos(nO-85,t)).

The gain g. for a given sideband is determined by the energy

balance equation

d a! ga .l4iic aj*> + cc). (12)

The bracket < > denotes the average of a quantity <f>-1/T f(t)dt over

the fast time scale T - 2n/kvve << T b w 2n/ab, and j yis the

transverse current

j (z,t) -enb Jfvy gf(J,O;t)dJdO, (13)

vi th

v - I Py - -(e/yoc)A y(z~t).

For small sideband signal Uf is the pertrurbed distributionf

under the Hamiltonian flov Eqs. (11)
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of1  of1  dfo0
TF + (J)e- - T IT,

vhere f0 is the equilibrium distribution along -the unperturbed orbits

df0 /dt=O. Any distribution fo(J) depending on J alone is invariant

under Eqs. (6)

df dJ df0

thus fo0 is not uniquely defined.

Solving Eq. (14) for fl, then substituting Eqs. (10) and (13)

into (12) and time-averaging one obtains the final result

2 2 2 -2 ._L -b- -°;,,,, ,~ I
9b- av E (16)

ws 8 yrr n I"o (Jn)+ Yr Idj )Jn n

vith wpb the bean plasma frequency. The superscript + or - corresponds

to upper *s>wr and lover a5 <*r sideband respectively. Jn is given

implicitly by the resonant condition

+nb(Jn) - (kv/kr) (s-*'r, (17)

as illustrated in Fig. 1(b). The sum over n on the right-hand side of

Eq. (16) includes the contribution from all resonant groups of

particles. The action Jn in Eq. (17) labels the orbit having the n-th

harmonic of the local bounce frequency in resonance vith the sideband.

The gain is determined by the slope of the distribution function f

near these resonant orbits JJn"
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III. RBSULTS AND CONCLUSIONS

The opposite signs in the right-hand side of Eq. (16) denote

that upper and lover sidebands located symmetrically around the main

signal I*s-r - Im--r have opposite growth rates, g+/g-=-1 +

O(Am/r . The physical reason is connected with quantum mechanical

considerations. The practical implication is that one sideband is

always unstable except in case of trivial equilibrium dfo0/dJ=O. It

also reveals that, once destabilized, upper and lover modes have

growth rates of equal magnitude and are equally dangerous. Ve clarify

that, in general, the opposite signs do not imply that all upper

sidebands have the same kind of stability, opposite to the stability

of all lover sidebands. Depending upon f0 stability may change sign

between two upper (or lover) frequencies because the slopes dfo/dJn

change as the location of the resonant Jn 's shift with 0s .

For a monotonic distribution f0 we observe that trapped and

untrapped particles yield opposite contributions to a given mode

because dob/dJ changes sign across the separatrix. If trapped

particles are stabilizing untrapped are destabilizing and vice versa.

High shear is stabilizing tending to reduce the magnitude of the gain

g. This is expected as the number of resonant orbits is inversely

proportional to Jdb/dJ j. Shear tends to infinity near the separatrix

thus the modes generated by electrons orbiting near the separatrix,

corresponding to small 1ws-wrI << (kr/kv)nob(O), have the smallest

growth rates. Nodes coming from electrons near the center Jn 0 with
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Is-a1 a (kr/kv)n%(O) have also small grovth rates as the

coefficients On(J) tend to zero there. In particular, given any smooth

distribution f0(J), electrons exactly at the bottom of the vell have a

null contribution to the instability. It takes a singular distribution

of infinite gradient at J-O to create an instability from electrons

exactly at the center of the separatrix. The shear is generally higher

for untrapped particles thus the trapped ones usually dominate the

instability.

Although Eq. (16) vas obtained on purely classical arguments

it nevertheless admits the correct quantum mechanical interpretation.

Expressing (dfo0 /dJ)(dt/dJ)-1 as df0/dob ye observe that the gain gs

is proportional to the difference in population of oscillation quanta

'lob between the energy levels across the resonance. A more detailed

explanation for the opposite signs in Eq. (16) is given in Ref. 13.

The normalized gain gs /(ar is plotted against the percentage

mismatch (ws-(ar)/r for both upper and lover sidebands in Figs. 2 and

4. The contribution up to the third harmonic n<4 in Eq. (16) is

included in these plots. The parameters chosen correspond to a wiggler

wavelength Xv=3 cm, av=5, main signal strength as5X10-4 beam energy

of 11.43MeV (1-0.999, "=22.37) and current density J-l00 A/cm 2 (beam

density 6.25xlO10cm-3). The equlibrium distribution is a Gaussian

f (J)=(1/2D 2 ) 1/2 exp(-(J-J) 2 /2D2) centered halfway inside the island,

Jo-W/2, and of width D equal to half the separatrix distance D=w/2,

with W.J sep . Ve plot the contribution of only the fundamental, n-i in

Eq. (16), in Fig. 2(a) adding the first harmonic n=2 in (b) the second

harmonic in (c) and the third harmonic in (d). New unstable bands

emerge with each harmonic, while the gain for already unstable bands

12



is modified. For example ve observe tvo upper and tvo lover unstable

bands in (b) but only one upper and three lover bands in (d). Ve find

the contributions from higher than the third harmonics n>4 generally

negligible. The upper frequency s>(r and the lover frequency (s <wr

parts of the unstable spectrum come from the regimes of negative and

positive slope dfo/da b respectively, shown in Fig. 3. The lover

sideband grovth is peaking at frequencies corresponding to nb(Jmax)

vith Jmax the value maximizing dfo/d%(J). The peaks for the upper

sideband grovth, hovever, do not occur at J-0 that minimizes

df0/dwb(J), but at J halfvay inside the negative slope regime. This is

because 0n (J) and consequently gs are zero at J=0, shoving the

negligible contribution from electrons at the bottom of the well. The

analogous effect in plasma physics is the elimination of the thermal

effects vhen pL goes to zero. In any case the most unstable modes are

far from the fequencies I%-(rl=(kr/kv)nw(O) pointed by the arrovs

in Fig. 2(d).

Since sidebands can not be shut out completely it remains

debatable vhether a distribution function can be tailored

experimentally to minimize their grovth rate. From the previous

discussion a flat distribution inside the trapped regime vith sharp

gradients localized at the separatrix seems the appropriate choice.

Instabilities will then localize near the separatrix and the gain will

be suppressed by the strong shear. To check this ve plot the grovth

rates from Eq. (16) for tvo types of distributions f0(J): (i) Tvo

Gaussians f (J)=(1/2nD2 ) 1/2exp(-J 2/2D2 ) centered at the centre of the

island and of characteristic lengths D equal to half the island vidth

D-v/2 in Fig. 4(a) and one island vidth D=v in Fig. 4(b). (ii) Tvo
1

13



ustep-like* distributions of the form f (J)=(1/D)1 /2 exp(-(J/aN))N

vith N.16. Selecting .(N/N-1) 1/N places the sharp gradient at J-D and

ve plot the case D-v/2 in Fig. 4(c) and D.v in Fig. 4(d).

Comparing Fig. 4(a) to Fig. 4(b) and Fig. 4(c) to Fig. 4(d) it

is seen that the grovth rates betveen similar types of distributions

tend to decrease as the location of the maximum gradient (df0/dJ) ax

approaches the separatrix. In both cases there is more than one order

of magnitude reduction in the gain by shifting the maximum gradient

position from DNv/2 to D-v. Because fo vas chosen monotonic in all

above plots and because it was limited to trapped particles, dfo/d b

preserves sign and only lover modes are unstable. The spectral vidth

of the unstable regimes is reduced vith a parallel increase in the

maximum gain as one goes from the Gaussian type to the step-like type

of distributions. Also the distance of the sideband frequencies from

the main signal decreases by shifting the gradient position D closer

to the separatrix. Distributions vith sharp gradients at the

separatrix such as those in Figs. 4(b) and 4(d) are perhaps more

relevant to the case of variable viggler FEL, vhere the "bucket" of

the trapped particles is decelerating in phase space leaving the

untrapped particles behind, and only small diffusion occurs across the

separatrix allowing sharp gradients.

The limit of a 8-function distribution fo=6(J-J ), examined

elsevhere13, is the most unstable case but of the least practical

interest, because even the case of a monoenergetic beam distribution

Pz Upo is described in J-space by a smooth distribution f0 (J) of

finite vidth WJ (see Fig. 1).

Our calculations done for the case of a fixed vavelength
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viggler can be easily extended to the case of a variable viggler FEL

provided that the same adiabatic assumptions hold. Only the functional

relations Eqs. (7) betveen the action-angle variables (J,O) and the

coordinates (P,*) need to change. The derivation of the grovth rate,

performed in J-space, is indepedent of the transformation J(P,*) and

the result, Eq. (16), stands as is. It is the high gain of tapered

viggler FELs that seems to challenge the adiabatic approach to the

problem. In this case the change of the signal amplitude ar (t) in time

together vith the depedence of the pseudo-equilibrium f0 on both time

and B should be included for a more realistic treatment.
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lew CAPTMOS

figure 1. Time averaged mtieon vitbout the sidebends. (a)Plots in

phase space of the unperturbed orbits o(?,#)-.K The

Intersections vith the horizontal line Peconst. mark the

initial conditions for each orbit. (b) The normalized bounce

frequency an sd the first tvo harmonic as functions of the

trapping parameter X2 (J). The intersections vith the

horizontal line *=(s-e* r )kv/kr determine the position J. of

the resonant orbits for a given mg.

Figure 2. Gain for a Gaussian distribution f 0 (J)=Cexp(-(J-J 0 )2/2D2)

centered halfvay inside the trapped particle island Jo=v/2

and of vidtb D equal to v where v=Jn p. The normalized gain

8s/o r is plotted versus Wer for (a) the fundamental

contribution n-i in 3q. (16), (b) including the first

harmonic n-2, (c) tvo harmonics and (d) three harmonics. The

most unstable modes do not correspond to harmonics of the

bounce frequency at the bottom wb(O) indicated by the

arrovM.

Figure 3. Plot of df 0 (J)/d&,(J)-dfo/dJ(dw./dJ)- I as a function of

K(J)-K(O) for the distribution f of Figure 2. The slope

goes to zero near the separatrix K(J g p ) because of the

infinite shear dab/dJ.

Figure 4. Normalized gain for monotonic distributions centered at the

bottom of the vell J=O including the first three harmonics

nS4 in Sq. (16). (a) Gaussian distribution of vidth D equal

to half the island vidth v, D-v/2 (b) Gaussian distribution

vith Dev. (c) Step-like distribution vith D.v/2 and (d)Step-

like distribution vith DNv.
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